How do you solve #a^ { 2} + 24^ { 2} = 26^ { 2}#?

2 Answers
Apr 15, 2018

#a=+-10#

Explanation:

#a^2+24^2=26^2#
#rArr a^2=26^2-24^2#
#rArr a^2=676-576#
#rArr a=sqrt100#
#rArr a=+-10#

Hope this helps :)

Apr 15, 2018

#+-10#

Explanation:

#a^2+24^2=26^2#

=>a^2=26^2-24^2#

the #RHS# is difference of squares

#a^2=(26-24)(26+24)#

#a^2=2xx50=100#

#a=+-sqrt100=+-10#