Let's rewrite the equation
#|3x-8|-x=0#
#|3x-8|=3x-8#, if #3x-8>=0#
and
#|3x-8|=-(3x-8)=-3x+8#, if #3x-8<0#
Let #f(x)=|3x-8|-x=0#
Let's build a variation table
#color(white)(aaaa)##x##color(white)(aaaaaaaa)##-oo##color(white)(aaaaaaaa)##0##color(white)(aaaaaaaaaa)##8/3##color(white)(aaaaaaa)##+oo#
#color(white)(aaaa)##x##color(white)(aaaaaaaaaaaaa)##-##color(white)(aaaa)####color(white)(aaaaa)##+##color(white)(aaaaaaaa)##+#
#color(white)(aaaa)##|3x-8|##color(white)(aaaaaa)##-3x+8##color(white)(a)####color(white)(aaa)##-3x+8##color(white)(aaaaa)##3x-8#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaaaaa)##x=2##color(white)(a)####color(white)(aaaaa)##x=2##color(white)(aaaaaa)##x=4#
The solutions are #S={2, 4}#
graph{|3x-8|-x [-7.9, 7.904, -3.95, 3.95]}