How do you solve and graph #2|2x+5|>=4#?

1 Answer
Apr 20, 2018

The solution is # x in (-oo, -7/2] uu[-3/2, +oo)#

Explanation:

Solving an inequality with absolute values

#2|2x+5|>=4#

#|2x+5|>=2#

#|2x+5|-2>=0#

#2x+5>=0#, #=>#, #x>=-5/2#

We can build a sign chart

#color(white)(aaaa)##x##color(white)(aaaaaaa)##-oo##color(white)(aaaaaaaaaaa)##-5/2##color(white)(aaaaaaaaa)##+oo#########

#color(white)(aaaa)##2x+5##color(white)(aaaaaaaaaaa)##-##color(white)(aaaaaa)##0##color(white)(aaaa)##+#########

#color(white)(aaaa)##|2x+5|##color(white)(aaaaaaa)##-2x-5##color(white)(aaaa)##0##color(white)(aaaa)##2x+5#########

#color(white)(aaaa)##|2x+5|-2##color(white)(aaaa)##-2x-7##color(white)(aaaa)####color(white)(aaaaa)##2x+3#########

Therefore,

In the Interval #(-oo, -5/2)#

#-2x-7>=0#, #<=>#, #2x<=-7#, #>=>#, #x<=-7/2#

In the Interval #( -5/2,+oo)#

#2x+3>=0#, #<=>#, #2x>=-3#, #>=>#, #x>=-3/2#

The solution is

# x in (-oo, -7/2] uu[-3/2, +oo)#

graph{|2x+5|-2 [-7.9, 7.9, -3.95, 3.95]}