# How do you solve and graph abs((2t+6)/2)>10?

Jun 12, 2017

See a solution process below:

#### Explanation:

The absolute value function takes any negative or positive term and transforms it to its positive form. Therefore, we must solve the term within the absolute value function for both its negative and positive equivalent.

$- 10 > \frac{2 t + 6}{2} > 10$

First, multiply each segment of the system of inequalities by $\textcolor{red}{2}$ to eliminate the fraction while keeping the system balanced:

$\textcolor{red}{2} \times - 10 > \textcolor{red}{2} \times \frac{2 t + 6}{2} > \textcolor{red}{2} \times 10$

$- 20 > \cancel{\textcolor{red}{2}} \times \frac{2 t + 6}{\textcolor{red}{\cancel{\textcolor{b l a c k}{2}}}} > 20$

$- 20 > 2 t + 6 > 20$

Next, subtract $\textcolor{red}{6}$ from each segment to isolate the $t$ term while keeping the system balanced:

$- 20 - \textcolor{red}{6} > 2 t + 6 - \textcolor{red}{6} > 20 - \textcolor{red}{6}$

$- 26 > 2 t + 0 > 14$

$- 26 > 2 t > 14$

Now, divide each segment by $\textcolor{red}{2}$ to solve for $t$ while keeping the system balanced:

$- \frac{26}{\textcolor{red}{2}} > \frac{2 t}{\textcolor{red}{2}} > \frac{14}{\textcolor{red}{2}}$

$- 13 > \frac{\textcolor{red}{\cancel{\textcolor{b l a c k}{2}}} t}{\cancel{\textcolor{red}{2}}} > 7$

$- 13 > t > 7$

Or

$t < - 13$ and $t > 7$

Or, in interval notation:

$\left(- \infty , - 13\right)$ and $\left(7 , \infty\right)$