How do you solve #e^(x+2) = 50#?

1 Answer
Dec 29, 2016

Answer:

#1.91 (3s.f.)#

Explanation:

convert to logarithmic form:

#a^m=n -> log_a(n)=m#

#e^(x+2)=50 -> log_e(50)=x+2#

#log_e(n)# can also be written as #ln(n)#.

#therefore log_e(50)=ln(50)#

#=x+2#

enter into a calculator:

#ln(50) = 3.91202..#

#= 3.91 (3s.f.)#

#x+2= 3.91 (3s.f.)#

subtract 2:

#x= 1.91 (3s.f.)#