How do you solve for #b# in #(b-c+d)/3=a#?

1 Answer
Oct 14, 2016

# :. b = 3a + c-d #

Explanation:

# (b-c+d)/3 = a #

Multiply both sides by 3:

# :. 3(b-c+d)/3 = 3a#
We can then cancel the 3
# :. cancel(3)(b-c+d)/(cancel(3)) = 3a#
# :. b-c+d = 3a#

Now add #c-d# to both sides:
# :. b-c+d + c-d= 3a + c-d#

The #c# and #d# will then also cancel
# :. b cancel(-c)+cancel(color(red)d) + cancel(c)-cancel(color(red)d)= 3a + c-d#
# :. b = 3a + c-d #