How do you solve #\frac { 1} { |12- 2x |} = 6#?

1 Answer
Apr 17, 2017

See the entire solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(abs(12 - 2x))/color(blue)(6)# to isolate the absolute value term:

#color(red)(abs(12 - 2x))/color(blue)(6) xx 1/abs(12 - 2x) = color(red)(abs(12 - 2x))/color(blue)(6) xx 6#

#cancel(color(red)(abs(12 - 2x)))/color(blue)(6) xx 1/color(red)(cancel(color(black)(abs(12 - 2x)))) = color(red)(abs(12 - 2x))/cancel(color(blue)(6)) xx color(blue)(cancel(color(black)(6)))#

#1/6 = abs(12 - 2x)#

#abs(12 - 2x) = 1/6#

The absolute value function takes any negative or positive term and transforms it to its positive form. Therefore, we must solve the term within the absolute value function for both its negative and positive equivalent.

Solution 1)

#12 - 2x = -1/6#

#-color(red)(12) + 12 - 2x = -color(red)(12) - 1/6#

#0 - 2x = (6/6 xx -color(red)(12)) - 1/6#

#-2x = -72/6 - 1/6#

#-2x = -73/6#

#color(red)(1/-2) xx -2x = color(red)(1/-2) xx -73/6#

#color(red)(1/cancel(-2)) xx color(red)(cancel(color(black)(-2)))x = 73/12#

#x = 73/12#

Solution 2)

#12 - 2x = 1/6#

#-color(red)(12) + 12 - 2x = -color(red)(12) + 1/6#

#0 - 2x = (6/6 xx -color(red)(12)) + 1/6#

#-2x = -72/6 + 1/6#

#-2x = -71/6#

#color(red)(1/-2) xx -2x = color(red)(1/-2) xx -71/6#

#color(red)(1/cancel(-2)) xx color(red)(cancel(color(black)(-2)))x = 71/12#

#x = 71/12#

The solution is #x = 71/12# and #x = 73/12#