How do you solve #\frac { 1} { 3} - \frac { x - 2} { 10} = \frac { 3- 2x } { 15} - \frac { 1} { 6} + x#?

1 Answer
May 14, 2017

#x=15/29#

Refer to the explanation for the process.

Explanation:

Solve:

#1/3-(x-2)/10=(3-2x)/15-1/6+x#

Determine least common denominator (LCD):

#3:##3,6,9,12,15,18,21,24,27,color(red)(30),36...#
#6:##6,12,18,24,color(red)30..#
#10:##10,20,color(red)30...#
#15:##15,color(red)30...#

The LCD is #30#.

Multiply both sides by the LCD #30#.

#(30xx1/3)-(30xx(x-2)/10)=(30xx(3-2x)/15)-(30xx1/6)+(30xx x)#

#(color(red)cancel(color(black)(30))^10xx1/color(red)cancel(color(black)(3^1)))-(color(red)cancel(color(black)(30))^3xx(x-2)/color(red)cancel(color(black)(10))^1)=(color(red)cancel(color(black)(30))^2xx(3-2x)/color(red)cancel(color(black)(15))^1)-(color(red)cancel(color(black)(30))^5xx1/color(red)cancel(color(black)(6))^1)+(30xx x)#

Simplify.

#10-3(x-2)=2(3-2x)-5+30x#

Expand.

#10-3x+6=6-4x-5+30x#

Simplify.

#-3x+16=1+26x#

Add #3x# to both sides.

#-3x+16=1+26x#

#16=1+26x+3x#

Simplify.

#16=1+29x#

Subtract #1# from both sides.

#16-1=29x#

Simplify.

#15=29x#

Divide both sides by #29#.

#15/29=x#

Switch sides.

#x=15/29#