How would one show that #(\frac { 1+ i } { \sqrt { 2} } ) ^ { 8} + ( \frac { 1- i } { \sqrt { 2} } ) ^ { 8} = 2#?

Original syntax:

How do you solve #(\frac { 1+ i } { \sqrt { 2} } ) ^ { 8} + ( \frac { 1- i } { \sqrt { 2} } ) ^ { 5} = 2#?

3 Answers
Oct 7, 2017

See below.

Explanation:

Rewriting:

#(1+i)^8/(sqrt(2))^8+(1-i)^8/(sqrt(2))^8=2#

#(1+i)^8/(2^(1/2))^8+(1-i)^8/(2^(1/2))^8=2#

#(1+i)^8/(2^4)+(1-i)^8/(2^4)=2#

#(1+i)^8+(1-i)^8=2*2^4=2^5#

Expanding brackets:

#(1+i)^8=1+8i+28i^2+56i^3+70i^4+56i^5+28i^6+8i^7+i^8#

#(1+i)^8=1+8i+28(-1)+56(-i)+70(1)+56(i)+28(-1)+8(-i)+1#

#16#

#(1-i)^8=1-8i+28i^2-56i^3+70i^4-56i^5+28i^6-8i^7+i^8#

#(1-i)^8=1-8i+28(-1)-56(-i)+70(1)-56(i)+28(-1)-8(-i)+1#

#16#

We then have:

#16+16= 2^5=> 32=32#

There is nothing to solve here, unless #i# wasn't the imaginary unit.

Oct 8, 2017

I presume the intent is to "show" rather than "solve" as there are no variables in the expression.

Thus we wish to show that:

# ( (1+i)/sqrt(2) )^8 + ( (1-i)/sqrt(2) )^8 = 2 #

We could use the binomial theorem to expand the brackets but due to the higher powers and number of terms DeMoivre's Law provides a much faster solution.

We can represent the LHS by:

# L = ( (1+i)/sqrt(2) )^8 + ( (1-i)/sqrt(2) )^8 #

# \ \ = (1+i)^8/(sqrt(2) )^8 + (1-i)^8/(sqrt(2) )^8 #

And now if we plot the two points # 1+i # and #1-i# on the argand diagram we can very quickly put them into polar form:

www.wolframalpha.com

So we can write:

# L = (sqrt(2)(cos(pi/4)+isin(pi/4)))^8/(sqrt(2) )^8 + (sqrt(2)(cos(-pi/4)+isin(-pi/4)))^8/(sqrt(2) )^8 #

# \ \ = (sqrt(2))^8(cos(pi/4)+isin(pi/4))^8/(sqrt(2) )^8 + (sqrt(2))^8(cos(-pi/4)+isin(-pi/4))^8/(sqrt(2) )^8 #

# \ \ = (cos(pi/4)+isin(pi/4))^8 + (cos(-pi/4)+isin(-pi/4))^8 #

And now we apply DeMoivre's Law to get:

# L = cos((8pi)/4)+isin((8pi)/4) + cos(-(8pi)/4)+isin(-(8pi)/4) #

# \ \ = 1+0i + 1+0i #

# \ \ = 2 # QED

Oct 8, 2017

See below.

Explanation:

Using #x+iy = sqrt(x^2+y^2)e^(i phi)# with #phi = arctan(y/x)# we have

#((1pmi)/sqrt2)^8 = (sqrt2/sqrt2 e^(pm pi/4))^8 = e^(pm i 2pi)# and then

#((1+i)/sqrt2)^8+((1-i)/sqrt2)^8 = e^(i 2pi)+e^(-i 2pi)#

and now using de Moivre's identity

#e^(ix) = cosx+i sinx# we have

#cosx = (e^(ix)+e^(-ix))/2# and then

#((1+i)/sqrt2)^8+((1-i)/sqrt2)^8 = 2cos(2pi) = 2#