How do you solve #\frac { 10x } { 11} = \frac { x } { 3} + 19#?

2 Answers
Feb 24, 2017

#x=33#

Explanation:

#(10x)/11=x/3+19#

#:.(10x)/11=x/3+19/1#

#:.(30x=11x+627)/33#

#:.(30x)/33=(11x)/33+627/33#

multiply L.H.S. and R.H.S. by #33/1#

#:.30x=11x+627#

#:.30x-11x=627#

#:.19x=627#

#:.x=627/19#

#:.x=33#

Feb 24, 2017

#x=33#

Explanation:

To eliminate the fractions in the equation, multiply ALL terms on both sides of the equation by the #color(blue)"lowest common multiple"# (LCM ) of the denominators 11 and 3

the LCM of 11 and 3 is 33

#rArr(cancel(33)^3xx(10x)/cancel(11)^1)=(cancel(33)^(11)xxx/cancel(3)^1)+(33xx19)#

#rArr30x=11x+627#

subtract 11x from both sides.

#30x-11x=cancel(11x)cancel(-11x)+627#

#rArr19x=627#

To solve for x, divide both sides by 19

#(cancel(19) x)/cancel(19)=627/19#

#rArrx=33#

#color(blue)"As a check"#

Substitute this value into the equation and if the left side is equal to the right side then it is the solution.

#"left side "=(10xx33)/11=330/11=30#

#"right side "=33/3+19=11+19=30#

#rArrx=33" is the solution"#