How do you solve #\frac { 2} { x - 3} - \frac { 1} { x + 3} = \frac { 11} { x ^ { 2} - 9}#?

1 Answer
Feb 6, 2017

#x=2#

Explanation:

#x^2-9 = ( x+3)(x-3)#
#2/(x-3) -1/(x+3) = 11/(x^2-9)#. Multiplying by #(x^2-9)# on both sides we get, #(2(x+3)(cancel(x-3)))/cancel((x+3))-(cancel((x+3))(x-3))/(cancel((x+3))) = (11 cancel((x+3)(x-3)))/cancel((x^2-9))#.

#2(x+3) - (x-3) = 11 or 2x+6 -x +3 =11 or x = 11-9 or x=2#[Ans]