Process 1:
multiply each side of the equation by #(color(red)(65)color(blue)(x))/color(green)(26)# to solve for #x# while keeping the equation balanced:
#(color(red)(65)color(blue)(x))/color(green)(26) xx 26/65 = (color(red)(65)color(blue)(x))/color(green)(26) xx 2/x#
#(cancel(color(red)(65))color(blue)(x))/cancel(color(green)(26)) xx color(green)(cancel(color(black)(26)))/color(red)(cancel(color(black)(65))) = (color(red)(65)cancel(color(blue)(x)))/(cancel(color(green)(26))13) xx color(green)(cancel(color(black)(2)))/color(blue)(cancel(color(black)(x)))#
#x = 65/13#
Process 2:
Because each side of the equation is a pure fraction we can flip the fractions:
#65/26 = x/2#
Now, multiply each side of the equation by #color(red)(2)# to solve for #x# while keeping the equation balanced:
#color(red)(2) xx 65/26 = color(red)(2) xx x/2#
#cancel(color(red)(2)) xx 65/(color(red)(cancel(color(black)(26)))13) = cancel(color(red)(2)) xx x/color(red)(cancel(color(black)(2)))#
#65/13 = x#
#x = 65/13#