How do you solve #\frac { 2a + 4} { 3} - 1= \frac { 7a - 13} { 5}#?
3 Answers
Explanation:
#"multiply ALL terms by the "color(blue)"lowest common multiple"#
#"of 3 and 5 to eliminate fractions"#
#"lowest common multiple of 3 and 5 is 15"#
#cancel(15)^5xx(2a+4)/cancel(3)^1-15=cancel(15)^3xx(7a-13)/cancel(5)^1#
#rArr5(2a+4)-15=3(7a-13)larrcolor(blue)"no fractions"#
#"distribute brackets on both sides of the equation"#
#10a+20-15=21a-39#
#rArr10a+5=21a-39#
#"subtract 21a from both sides"#
#10a-21a+5=cancel(21a)cancel(-21a)-39#
#rArr-11a+5=-39#
#"subtract 5 from both sides"#
#-11acancel(+5)cancel(-5)=-39-5#
#rArr-11a=-44#
#"divide both sides by "-11#
#(cancel(-11) a)/cancel(-11)=(-44)/(-11)#
#rArra=4#
#color(blue)"As a check"# Substitute this value into the equation and if both sides are equal then it is the solution.
#"left "=(8+4)/3-1=4-1=3#
#"right "=(28-13)/5=15/5=3#
#rArra=4" is the solution"#
a=4
Explanation:
First - common denominator:
--
--
now we take all the numbers with "a" to the right,
and all the numbers without "a" to the left:
now I know that 11a=44, but I want to know a=?
--
--