How do you solve #\frac { 2a + 4} { 3} - 1= \frac { 7a - 13} { 5}#?

3 Answers
Nov 15, 2017

#a=4#

Explanation:

#"multiply ALL terms by the "color(blue)"lowest common multiple"#
#"of 3 and 5 to eliminate fractions"#

#"lowest common multiple of 3 and 5 is 15"#

#cancel(15)^5xx(2a+4)/cancel(3)^1-15=cancel(15)^3xx(7a-13)/cancel(5)^1#

#rArr5(2a+4)-15=3(7a-13)larrcolor(blue)"no fractions"#

#"distribute brackets on both sides of the equation"#

#10a+20-15=21a-39#

#rArr10a+5=21a-39#

#"subtract 21a from both sides"#

#10a-21a+5=cancel(21a)cancel(-21a)-39#

#rArr-11a+5=-39#

#"subtract 5 from both sides"#

#-11acancel(+5)cancel(-5)=-39-5#

#rArr-11a=-44#

#"divide both sides by "-11#

#(cancel(-11) a)/cancel(-11)=(-44)/(-11)#

#rArra=4#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=(8+4)/3-1=4-1=3#

#"right "=(28-13)/5=15/5=3#

#rArra=4" is the solution"#

Nov 15, 2017

a=4

Explanation:

#(2a+4)/3-1=(7a-13)/5#

First - common denominator:

#(2a+4)/3-1/1=(7a-13)/5 | *(3*1*5=15)#
#=> (15(2a+4))/3-((15)1)/1=(15(7a-13))/5#

--

#(15/5=3 , 15/3=5 , 15/1=15)#

--

#=> 5(2a+4)-15=3(7a-13)#
#=> 5*2a+5*4-15=3*7a-3*13#
#=> 10a+20-15=21a-39#
#=> 10a+5=21a-39#

now we take all the numbers with "a" to the right,
and all the numbers without "a" to the left:

#10a+5=21a-39 | (-10a +39)#
#=> 10a-10a+5+39=21a-10a-39+39#
#=> 0a+44=11a-0#
#=> 44=11a#

now I know that 11a=44, but I want to know a=?
#44=11a | ( :11)#
#=> 44/11=(11a)/11#

--

#44/11=4 , 11/11=1#

--

#=> 4=a#

Nov 15, 2017

#a=4#

Explanation:

#(2a+4)/3-1=(7a-13)/5#

#(7a-13)/5-(2a+4)/3=-1#

#[3*(7a-13)-5*(2a+4)]/15=-1#

#(21a-39-10a-20)/15=-1#

#11a-59=-15#

#11a=44#

#a=4#