Let #f(x)=((2x+1)/(x-5))^2#
The domain of #f(x)# is #x in RR-{5}#
The inequality is #f(x)>0#
Let's build a sign chart
#color(white)(aaaa)##x##color(white)(aaaaaaa)##-oo##color(white)(aaaaaa)##-1/2##color(white)(aaaaaaa)##5##color(white)(aaaa)##+oo#
#color(white)(aaaa)##(2x+1)^2##color(white)(aaaa)##+##color(white)(aaaaaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##(x-5)^2##color(white)(aaaaa)##+##color(white)(aaaaaa)####color(white)(aaaa)##+##color(white)(aa)##||##color(white)(a)##+#
#color(white)(aaaa)##f(x)##color(white)(aaaaaaaa)##+##color(white)(aaaaaa)##0##color(white)(aaaa)##+##color(white)(a)##||##color(white)(a)##+#
Therefore,
#f(x)>0# when #x in (-oo, -1/2)uu(-1/2,5)uu(5,+oo)#
graph{(2x+1)^2/(x-5)^2 [-40.24, 41.92, -17.72, 23.4]}