How do you solve #(\frac { 2x + 1} { x - 5} ) ^ { 2} > 0#?

1 Answer
Jan 16, 2018

The solution is #x in (-oo, -1/2)uu(-1/2,5)uu(5,+oo)#

Explanation:

Let #f(x)=((2x+1)/(x-5))^2#

The domain of #f(x)# is #x in RR-{5}#

The inequality is #f(x)>0#

Let's build a sign chart

#color(white)(aaaa)##x##color(white)(aaaaaaa)##-oo##color(white)(aaaaaa)##-1/2##color(white)(aaaaaaa)##5##color(white)(aaaa)##+oo#

#color(white)(aaaa)##(2x+1)^2##color(white)(aaaa)##+##color(white)(aaaaaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##(x-5)^2##color(white)(aaaaa)##+##color(white)(aaaaaa)####color(white)(aaaa)##+##color(white)(aa)##||##color(white)(a)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaaa)##+##color(white)(aaaaaa)##0##color(white)(aaaa)##+##color(white)(a)##||##color(white)(a)##+#

Therefore,

#f(x)>0# when #x in (-oo, -1/2)uu(-1/2,5)uu(5,+oo)#

graph{(2x+1)^2/(x-5)^2 [-40.24, 41.92, -17.72, 23.4]}