First do a cross product or cross multiply the equation:
#11(2x + 12) = 10(3x - 6)#
Next, expand the terms in parenthesis on each side of the equation by multiplying each of the terms within the parenthesis by the term outside the parenthesis:
#color(red)(11)(2x + 12) = color(blue)(10)(3x - 6)#
#(color(red)(11) xx 2x) + (color(red)(11) xx 12) = (color(blue)(10) xx 3x) - (color(blue)(10) xx 6)#
#22x + 132 = 30x - 60#
Then, subtract #color(red)(22x)# and add #color(blue)(60)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#-color(red)(22x) + 22x + 132 + color(blue)(60) = -color(red)(22x) + 30x - 60 + color(blue)(60)#
#0 + 192 = (-color(red)(22) + 30)x - 0#
#192 = 8x#
Now, divide each side of the equation by #color(red)(8)# to solve for #x# while keeping the equation balanced:
#192/color(red)(8) = (8x)/color(red)(8)#
#24 = x#
#x = 24#