How do you solve #\frac{2x+5}{3}-2=3#?

2 Answers
Jun 7, 2017

#x=5#

Explanation:

Add #2# both sides of the equation.

#(2x+5)/3-2color(red)(+2)=3color(red)(+2)#

#(2x+5)/3=5#

Multiply both sides by #3#.

#(2x+5)/3color(red)(xx3)=5color(red)(xx3)#

#2x+5=15#

Subtract #5# from both sides.

#2x+5color(red)(-5)=15color(red)(-5)#

#2x=10#

Divide both sides by #2#.

#(2x)/color(red)(2)=10/color(red)(2)#

#x=5#

Jun 7, 2017

#x=5#

Explanation:

#"to eliminate the fraction multiply ALL terms by 3 , the"#
#"denominator of the fraction"#

#cancel(3)^1xx(2x+5)/cancel(3)^1-(3xx2)=3xx3#

#rArr2x+5-6=9larrcolor(red)" no fractions"#

#rArr2x-1=9#

#"add 1 to both sides"#

#2xcancel(-1)cancel(+1)=9+1#

#rArr2x=10#

#"divide both sides by 2"#

#(cancel(2)color(white)(x)x)/cancel(2)=10/2#

#rArrx=5#

#color(blue)"As a check"#

Substitute this value into the left side and if equal to the right side then it is the solution.

#(2xx5+5)/3-2=15/3-2=5-2=3=" right side"#

#rArrx=5" is the solution"#