First, multiply each side of the equation by #color(red)(10)color(blue)(x)# to eliminate the fractions. #10x# is the common denominator for all of the fractions:
#color(red)(10)color(blue)(x)(3/5 + 1/2) = color(red)(10)color(blue)(x) xx 1/x#
#(color(red)(10)color(blue)(x) xx 3/5) + (color(red)(10)color(blue)(x) xx 1/2) = color(red)(10)cancel(color(blue)(x)) xx 1/color(blue)(cancel(color(black)(x)))#
#(cancel(color(red)(10))2color(blue)(x) xx 3/color(red)(cancel(color(black)(5)))) + (cancel(color(red)(10))5color(blue)(x) xx 1/color(red)(cancel(color(black)(2)))) = 10#
#6x + 5x = 10#
Next, combine like terms on the left side of the equation:
#(6 + 5)x = 10#
#11x = 10#
Now, divide each side of the equation by #color(red)(11)# to solve for #x# while keeping the equation balanced:
#(11x)/color(red)(11) = 10/color(red)(11)#
#(color(red)(cancel(color(black)(11)))x)/cancel(color(red)(11)) = 10/11#
#x = 10/11#