How do you solve #\frac { 3} { 5} + \frac { 1} { 2} = \frac { 1} { x }#?

1 Answer
Feb 22, 2017

See the entire solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(10)color(blue)(x)# to eliminate the fractions. #10x# is the common denominator for all of the fractions:

#color(red)(10)color(blue)(x)(3/5 + 1/2) = color(red)(10)color(blue)(x) xx 1/x#

#(color(red)(10)color(blue)(x) xx 3/5) + (color(red)(10)color(blue)(x) xx 1/2) = color(red)(10)cancel(color(blue)(x)) xx 1/color(blue)(cancel(color(black)(x)))#

#(cancel(color(red)(10))2color(blue)(x) xx 3/color(red)(cancel(color(black)(5)))) + (cancel(color(red)(10))5color(blue)(x) xx 1/color(red)(cancel(color(black)(2)))) = 10#

#6x + 5x = 10#

Next, combine like terms on the left side of the equation:

#(6 + 5)x = 10#

#11x = 10#

Now, divide each side of the equation by #color(red)(11)# to solve for #x# while keeping the equation balanced:

#(11x)/color(red)(11) = 10/color(red)(11)#

#(color(red)(cancel(color(black)(11)))x)/cancel(color(red)(11)) = 10/11#

#x = 10/11#