How do you solve #\frac { 3} { x ^ { 2} - 6x + 8} \leq \frac { 6} { x ^ { 2} - 16}#?

1 Answer
Mar 24, 2017

The solution is #x in ]-oo,-4[uu]-2,4[uu[8,+oo[#

Explanation:

We cannot do crossing over

#3/((x-4)(x-2))-6/((x+4)(x-4))<=0#

#(3(x+4)-6(x-2))/((x+4)(x-4)(x+2))<=0#

#(3x+12-6x+12)/((x+4)(x-4)(x+2))<=0#

#(24-3x)/((x+4)(x-4)(x+2))<=0#

#(3(8-x))/((x+4)(x-4)(x+2))<=0#

Let #f(x)=(3(8-x))/((x+4)(x-4)(x+2))#

We can build a sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-4##color(white)(aa aaa)##-2##color(white)(aaaaaaaa)##4##color(white)(aaaaaa)##8##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+4##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##+##color(white)(aaa)##||##color(white)(aaa)##+##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x+2##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aaa)##||##color(white)(aaa)##+##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x-4##color(white)(aaaa)##-##color(white)(aaa)##||##color(white)(aa)##-##color(white)(aaa)##||##color(white)(aaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##8-x##color(white)(aaaa)##+##color(white)(aaa)##||##color(white)(aa)##+##color(white)(aaa)##||##color(white)(aaa)##+##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##-##color(white)(aaa)##||##color(white)(aa)##+##color(white)(aaa)##||##color(white)(aaa)##-##color(white)(aa)##||##color(white)(aa)##+##color(white)(aaaa)##-#

Therefore,

#f(x)<=0# when #x in ]-oo,-4[uu]-2,4[uu[8,+oo[#