First, multiple each side of the equation by #color(red)(3x)# to eliminate the fractions and keep the equation balanced:
#color(red)(3x)(3/x - 1/(3x)) = color(red)(3x) xx 2/3#
#(color(red)(3x) xx 3/x) - (color(red)(3x) xx 1/(3x)) = color(red)(3x) xx 2/3#
#(color(red)(3)cancel(color(red)(x)) xx 3/color(red)(cancel(color(black)(x)))) - (cancel(color(red)(3)color(red)(x)) xx 1/color(red)(cancel(color(black)(3x)))) = cancel(color(red)(3))color(red)(x) xx 2/color(red)(cancel(color(black)(3)))#
#(3 xx 3) - 1 = (x xx 2)#
#9 - 1 = 2x#
#8 = 2x#
Now, divide each side of the equation by #color(red)(2)# to solve for #x# while keeping the equation balanced:
#8/color(red)(2) = (2x)/color(red)(2)#
#4 = (color(red)(cancel(color(black)(2)))x)/cancel(color(red)(2))#
#4 = x#
#x = 4#