How do you solve #\frac { 3x + 7} { 14- 7x } \geq 0#?

1 Answer
Dec 1, 2016

The answer is #=x in [-7/3, 2[ #

Explanation:

Let #f(x)=(3x+7)/(14-7x)#

The domain of #f(x)# is #D_f(x)=RR-{2}

Let's do the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-7/3##color(white)(aaaa)##2##color(white)(aaaa)##+oo#

#color(white)(aaaa)##(3x+7)##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##(14-7x)##color(white)(aaa)##+##color(white)(aaaa)##+##∥##color(white)(aa)##-#

#color(white)(aaaa)##f(x)##color(white)(aaaaaaa)##-##color(white)(aaaa)##+##∥##color(white)(aa)##-#

Therefore,# f(x)>=0#, when #x in [-7/3, 2[ #

graph{(3x+7)/(14-7x) [-11.34, 11.17, -5.03, 6.22]}