First, subtract #color(red)(47/8x)# and add #color(red)(12)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#47/8x + 17 - color(red)(47/8x) + color(red)(12) = 13x - 12 - color(red)(47/8x) + color(red)(12)#
#47/8x - color(red)(47/8x) + 17 + color(red)(12) = 13x - color(red)(47/8x) - 12 + color(red)(12)#
#0 + 29 = (8/8 xx 13x) - color(red)(47/8x) - 0#
#29 = 104/8x - color(red)(47/8x)#
#29 = 57/8x#
Now, multiply each side of the equation by #color(red)(8/57)# to solve for #x# while keeping the equation balanced:
#color(red)(8/57) xx 29 = color(red)(8/57) xx 57/8x#
#232/57 = x#
#x = 232/57#