How do you solve #(\frac { 5} { 6} - n ) - \frac { 1} { 3} = \frac { 5} { 12}#?

1 Answer
Feb 4, 2018

#n = (1)/(12)#

Explanation:

#((5)/(6)−(n)/(1))−(1)/(3)=(5)/(12)#

1) Solve the subtraction inside the parentheses

#(5 - 6n)/(6) - (1)/(3) = (5)/(12)#

2) Clear the fractions by multiplying all the terms on both sides by #12# and letting the denominators cancel
#2 (5 - 6n) - 4 = 5#

3) Clear the parentheses by distributing the #2#
#10 - 12n - 4 = 5#

4) Combine like terms
#6 - 12n = 5#

5) Subtract #6# from both sides to isolate the #-12n# term
#- 12n = - 1#

6) Divide both sides by #-12# to isolate #n#
#n = (1)/(12)# #larr# answer

Check

Sub in #(1)/(12)# in the place of #n# to see if the equation still equals #(5)/(12)#

#((5)/(6)−n) −(1)/(3)=(5)/(12)#

#((5)/(6)−(1)/(12)) −(1)/(3) "should equal" (5)/(12)#

Give each term the common denominator of #12#
#((10)/(12)−(1)/(12)) −(4)/(12) "should equal" (5)/(12)#

Clear the parentheses by solving the subtraction
#(9)/(12) −(4)/(12) "should equal" (5)/(12)#

Combine like terms by doing the subtraction
#(5)/(12) "does equal" (5)/(12)#

#Check#