First, multiply each side of the equation by #color(red)(3)color(blue)((y - 2))# to eliminate the fractions while keeping the equation balanced:
#color(red)(3)color(blue)((y - 2)) xx 5/(y - 2) = color(red)(3)color(blue)((y - 2)) xx y/3#
#color(red)(3)cancel(color(blue)((y - 2))) xx 5/color(blue)(cancel(color(black)(y - 2))) = cancel(color(red)(3))color(blue)((y - 2)) xx y/color(red)(cancel(color(black)(3)))#
#color(red)(3) xx 5 = color(blue)((y - 2)) xx y#
#15 = y^2 - 2y#
Next, put the equation in standard form:
#15 - color(red)(15) = y^2 - 2y - color(red)(15)#
#0 = y^2 - 2y - 15#
#y^2 - 2y - 15 = 0#
Then factor the left side of the equation as:
#(y - 5)(y + 3) = 0#
Now, solve each term on the left for #0#:
Solution 1:
#y - 5 = 0#
#y - 5 + color(red)(5) = 0 + color(red)(5)#
#y - 0 = 5#
#y = 5#
Solution 2:
#y + 3 = 0#
#y + 3 - color(red)(3) = 0 - color(red)(3)#
#y + 0 = -3#
#y = -3#
The Solutions Are:
#y = {-3, 5}#