How do you solve #\frac { 8( 6t - 22) } { 14} = \frac { 9( 10t - 18) } { 21}#?

1 Answer
May 10, 2017

#t=-17/3#

Explanation:

#(8(6t-22))/14=(9(10t-18))/21#

Let's use the distributive property to condese all our numbers:

#(48t-176)/14=(90t-162)/21#

Let's see if we can simplify the numerators and denominators by factoring out a common multiple:

#(cancel(2)(24t-88))/(cancel(2)xx7)=(cancel(3)(30t-54))/(cancel(3)xx7)#

#((24t-88))/(7)=((30t-54))/(7)#

multiply both sides by #7#

#cancel(7)*((24t-88))/(cancel(7))=((30t-54))/(cancel(7))*cancel(7)#

Now we're left with #24t-88=30t-54#

subtract #24t# on both sides

#-88=6x-54#

add #54# on both sides

#-34=6t#

divide by #6# on both sides

#t=-34/6#

expand and simplify

#t=(-1xx17xxcancel(2))/(3xxcancel(2))#

#t=-17/3#