How do you solve #\frac { 8} { x + 9} = \frac { 9} { x }#?

1 Answer
Jan 25, 2018

See a solution process below:

Explanation:

First, multiply each side of the equation by #color(red)(x)color(blue)((x + 9))# to eliminate the fractions while keeping the equation balanced:

#color(red)(x)color(blue)((x + 9)) xx 8/(x + 9) = color(red)(x)color(blue)((x + 9)) xx 9/x#

#color(red)(x)cancel(color(blue)((x + 9))) xx 8/color(blue)(cancel(color(black)(x + 9))) = cancel(color(red)(x))color(blue)((x + 9)) xx 9/color(red)(cancel(color(black)(x)))#

#8x = 9color(blue)((x + 9))#

#8x = (9 xx color(blue)(x)) + (9 xx color(blue)(9))#

#8x = 9x + 81#

Now, subtract #color(red)(8x)# and #color(blue)(81)# from each side of the equation to solve for #x# while keeping the equation balanced:

#8x - color(red)(8x) - color(blue)(81) = 9x - color(red)(8x) + 81 - color(blue)(81)#

#0 - color(blue)(81) = (9 - color(red)(8))x + 0#

#-81 = 1x#

#-81 = x#

#x = -81#