First, subtract #color(red)(8/x)# from each side of the equation to isolate the #x# term while keeping the equation balanced:
#-color(red)(8/x) + 8/x + 1/9 = -color(red)(8/x) + 7/x#
#0 + 1/9 = (-color(red)(8) + 7)/x#
#1/9 = -1/x#
Now, multiply each side of the equation by #color(red)(9)color(blue)(x)# to solve for #x# while keeping the equation balanced:
#color(red)(9)color(blue)(x) xx 1/9 = color(red)(9)color(blue)(x) xx -1/x#
#cancel(color(red)(9))color(blue)(x) xx 1/color(red)(cancel(color(black)(9))) = color(red)(9)cancel(color(blue)(x)) xx -1/color(blue)(cancel(color(black)(x)))#
#x = -9#