How do you solve #\frac { t - 3} { 6} - \frac { t - 25} { 5} = 4#?

2 Answers
Mar 4, 2017

#t=15#

Explanation:

Given:

#4 = (t-3)/6-(t-25)/5#

Multiply both sides of the equation by #6*5=30# to get:

#120 = 5(t-3)-6(t-25)#

#color(white)(120) = 5t-15-6t+150#

#color(white)(120) = -t+135#

Add #t-120# to both ends to get:

#t = 15#

Mar 4, 2017

#t=15#

Explanation:

#(t-3)/6-(t-25)/5=4#

#:.(5(t-3)-6(t-25)=120)/30#

#:.(5(t-3))/30-(6(t-25))/30=120/30#

multiply #color(red)( L.H.S and R.H.S. by 30#

#:.30/1 xx ((5(t-3))/30-(6(t-25))/30=120/30) xx 30/1#

#:.cancel30^color(red)1/1 xx (5(t-3))/cancel30^color(red)1-cancel30^color(red)1/1 xx (6(t-25))/cancel30^color(red)1=cancel30^color(red)1/1 xx 120/cancel30^color(red)1#

#:.color(red)1/color(red)1 xx (5(t-3))/color(red)1-color(red)1/color(red)1 xx (6(t-25))/1=color(red)1/color(red)1 xx 120/color(red)1#

#:.5(t-3)-6(t-25)=120#

#:.5t-15-6t+150=120#

#:.5t-6t-15+150=120#

#5t-6t+135=120#

#-t=120-135#

#:.-t=-15#

multiply #color(red)( L.H.S and R.H.S. by -1#

#:.t=15#

check:

substitute #color(red)( t=15#

#:.((color(red)15)-3)/6-((color(red)(15)-25))/5=4#

#:.12/6-((-10))/5=4#

#:.12/6+10/5=4#

#:.2+2=4#