How do you solve #\frac { x ^ { 2} + 3x + 2} { x ^ { 2} - 9} \leq 0#?

1 Answer
May 14, 2017

The solution is #x in (-3,-2] uu [-1,3)#

Explanation:

Let`s factorise the numerator and denominator

#(x^2+3x+2)/(x^2-9)<=0#

#((x+1)(x+2))/((x+3)(x-3))<=0#

Let

#f(x)=((x+1)(x+2))/((x+3)(x-3))#

We can build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaaa)##-3##color(white)(aaaa)##-2##color(white)(aaaaa)##-1##color(white)(aaaaaaaa)##3##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+3##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+#

#color(white)(aaaa)##x+2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+#

#color(white)(aaaa)##x+1##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##||##color(white)(aa)##+#

#color(white)(aaaa)##x-3##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aaa)##-##color(white)(aaaa)##+##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aa)##+#

Therefore,

#f(x)<=0# when #x in (-3,-2] uu [-1,3)#