How do you solve \frac { x ^ { 2} - 8x + 15} { x - 5} = 0?

1 Answer
Apr 24, 2017

x=3

Explanation:

\frac { x ^ { 2} - 8x + 15} { x - 5} = 0

First solve the numerator by quadratic formula or factoring method.

[(x-5)(x-3)]/(x-5)=0

Divide common factors

[cancel((x-5))(x-3)]/cancel((x-5))=0

x-3=0

x=3

We can check it too

Since x=3,

\frac { x ^ { 2} - 8x + 15} { x - 5} = 0

\frac { 3 ^ { 2} - 8(3) + 15} { 3 - 5} = 0

\frac { 9 - 24+ 15} { -2} = 0

\frac { 0} { -2} = 0

0=0