How do you solve #\frac { x } { 4} + \frac { 2} { 5} = \frac { x } { 2} - 1#?

2 Answers
Apr 24, 2017

#x=28/5#

Explanation:

We need to change the denominators so that they are they the same.
#x/4+2/5=x/2-1#
Let's make the denominator for all the fractions #20#:
#5/5xx x/4+2/5xx4/4=10/10xx x/2-20/20#

#(5x)/(20)+(8)/(20)=(10x)/(20)-20/20#

#(5x+8)/20=(10x-20)/20#

multiply by #20# on both sides

#5x+8=10x-20#

subtract #8#

#5x=10x-28#

subtract #10x#

#-5x=-28#

divide by #-5#

#x=28/5#

Apr 24, 2017

#x=28/5#

Explanation:

One way is to collect the terms in x on the left side and numeric values on the left side.

#"add 1 to both sides and subtract " x/4" from both sides"#

#rArr2/5+1=x/2-x/4#

#rArr7/5=x/4#

#color(blue)"cross-multiplying " "gives"#

#5x=28#

#"divide both sides by 5"#

#(cancel(5) x)/cancel(5)=28/5#

#rArrx=28/5#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution

#(28/5)/4+2/5=28/20+8/20=36/20=9/5larrcolor(red)" left side"#

#(28/5)/2-1=28/10-10/10=18/10=9/5larrcolor(red)" right side"#

#rArrx=28/5" is the solution"#