How do you solve #\frac { x + 4} { x - 3} \leq 0#?

1 Answer
Mar 3, 2017

The solution is #x in ]-oo,-4] uu ]3,+oo[#

Explanation:

We solve this inequality with a sign chart

Let #f(x)=(x+4)/(x-3)#

The domain of #f(x)# is #D_f(x)=RR-{3}#

The sign chart is

#color(white)(aaaa)##x##color(white)(aaaa)##-oo##color(white)(aaaa)##-4##color(white)(aaaaaaa)##3##color(white)(aaaaaaa)##+oo#

#color(white)(aaaa)##x+4##color(white)(aaaa)##-##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##x-3##color(white)(aaaa)##-##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+#

#color(white)(aaaa)##f(x)##color(white)(aaaaa)##+##color(white)(aaaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+#

Therefore,

#f(x)>=0#, when #x in ]-oo,-4] uu ]3,+oo[#