How do you solve in simple # a + bi# form: #x^2 - 2x + 10 = 0#?

1 Answer
Dec 8, 2017

Solution: #x=1+ 3i,x=1- 3i#

Explanation:

#x^2-2x+10=0 or x^2-2x= -10# or

#x^2-2x+1= -10+1# or

#(x-1)^2= -9 or (x-1)= +-sqrt(-9)# or

#x=1+- sqrt(9i^2)[i^2=-1] or x=1+- sqrt((3i)^2)# or

#x=1+- 3i#

Solution: #x=1+ 3i,x=1- 3i# [Ans]