# I = int_0^(2pi) int_0^6 3r^2 sin theta dr d theta = 0#
Explanation:
Let # I = int_0^(2pi) int_0^6 3r^2 sin theta dr d theta #, Then:
# I = int_0^(2pi) (int_0^6 3r^2 sin theta dr )d theta # # :. I = int_0^(2pi) [3r^3/3sin theta]_(r=0)^(r=6) d theta # # :. I = int_0^(2pi) sin theta[r^3 ]_(r=0)^(r=6) d theta # # :. I = int_0^(2pi) sin theta(216-0) d theta # # :. I = int_0^(2pi) (216sin theta) d theta # # :. I = [-216cos theta]_0^(2pi) # # :. I = -216[cos theta]_0^(2pi) # # :. I = -216(1-1) # # :. I = 0 #