How do you solve #j^ { 2} - 24j - 29= 0#?
1 Answer
Nov 19, 2016
Explanation:
Complete the square, then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#0 = j^2-24j-29#
#color(white)(0) = j^2-24j+144-173#
#color(white)(0) = (j-12)^2-(sqrt(173))^2#
#color(white)(0) = ((j-12)-sqrt(173))((j-12)+sqrt(173))#
#color(white)(0) = (j-12-sqrt(173))(j-12+sqrt(173))#
Hence:
#j = 12 +-sqrt(173)#