How do you solve #lim_(n->oo) (3^n + 5^n + 7^n)^(1/n) = #?

1 Answer
Jul 14, 2017

# lim_(n rarr oo) (3^n+5^n+7^n)^(1/n) = 7 #

Explanation:

We have:

# L = lim_(n rarr oo) (3^n+5^n+7^n)^(1/n) #

As the logarithmic function is monotonic, then we can take the log of the limit, to get:

# ln L = ln lim_(n rarr oo) (3^n+5^n+7^n)^(1/n) #

# " " = lim_(n rarr oo) ln {(3^n+5^n+7^n)^(1/n)} #

# " " = lim_(n rarr oo) 1/n \ ln (3^n+5^n+7^n) #

# " " = lim_(n rarr oo) (ln (3^n+5^n+7^n))/n #

This is now of an indeterminate form #oo//oo#, so we can apply L'Hôpital's rule to get

# ln L = lim_(n rarr oo) (d/(dn) \ ln (3^n+5^n+7^n))/(d/(dn) n) #

# " " = lim_(n rarr oo) (((ln3)3^x + (ln5)5^x + (ln7)7^x)/(3^n+5^n+7^n))/1 #

# " " = lim_(n rarr oo) ((ln3)3^n + (ln5)5^n + (ln7)7^n)/(3^n+5^n+7^n)#

Now we can simplify the limit by multiplying the numerator and denominator by #1/7^n#, to get:

# ln L = lim_(n rarr oo) ((ln3)3^n + (ln5)5^n + (ln7)7^n)/(3^n+5^n+7^n) * (1/7^n)/(1/7^n) #

# " " = lim_(n rarr oo) ((ln3)3^n/7^n + (ln5)5^n/7^n + (ln7)7^n/7^n)/(3^n/7^n+5^n/7^n+7^n/7^n) #

# " " = lim_(n rarr oo) ((ln3)(3/7)^n + (ln5)(5/7)^n + (ln7)(7/7)^n)/((3/7)^n+(5/7)^n+(7/7)^n) #

# " " = lim_(n rarr oo) ((ln3)(3/7)^n + (ln5)(5/7)^n + ln7)/((3/7)^n+(5/7)^n+1) #

Now, we note that as both #|3/7| lt 1# and #|5/7| lt 1# then both entities:

# (3/7)^n # and #(5/7)^n rarr 0# as #n rarr oo#

Thus we can evaluate our limit to get:

# ln L = ((ln3)(0) + (ln5)(0) + ln7)/(0+0+1) #
# " " = ln 7 #

From which we conclude that:

# L = 7 #