How do you solve #ln e^x -ln e^3 = ln e^9#?
1 Answer
Jul 7, 2016
If you use the properties of logarithms, you will need to refer to these:
#lna^b = blna# #lne = 1#
OR
#lne^z = z#
where
#lne^x - lne^3 = lne^9#
#lne^x = lne^9 + lne^3#
#xcancel(lne) = 9cancel(lne) + 3cancel(lne)#
#color(blue)(x) = 9 + 3 = color(blue)(12)#