How do you solve #ln x + ln (x+3) = 1#?

1 Answer
Nov 16, 2016

Combine the left into one term using the rule #ln(ab)=lna+lnb#

#lnx+ln(x+3)=1#
#ln[(x)(x+3)]=1#
#ln(x^2+3x)=1#

Rewrite using the definition of log:
#e^1=x^2+3x#
#e=x^2+3x#

Now solve as a quadratic; first set one side equal to zero:
#0=x^2+3x-e#

Use quadratic formula:
#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-(3)+-sqrt(3^2-4(1)(e)))/(2(1))#
#x=(-3+-sqrt(9-4e))/2#

#xapprox(-3+-sqrt(-1.87))/2#

Because we take the square root of a negative number, there are no solutions to the equation.