How do you solve #\log _ { 2} ( x ^ { 3} + x ^ { 2} + 1) = 6#?
1 Answer
Real root:
#x = 1/3(-1+root(3)((1699+9sqrt(35637))/2)+root(3)((1699-9sqrt(35637))/2))#
and related complex roots.
Explanation:
Given:
#log_2(x^3+x^2+1) = 6#
Taking exponents base
#x^3+x^2+1 = 2^6 = 64#
Subtract
#x^3+x^2-63 = 0#
We can solve this cubic using standard methods...
Given:
#f(x) = x^3+x^2-63#
Discriminant
The discriminant
#Delta = b^2c^2-4ac^3-4b^3d-27a^2d^2+18abcd#
In our example,
#Delta = 0+0+252-107163+0 = -106911#
Since
Tschirnhaus transformation
To make the task of solving the cubic simpler, we make the cubic simpler using a linear substitution known as a Tschirnhaus transformation.
#0=27f(x)=27x^3+27x^2-1701#
#=(3x+1)^3-3(3x+1)-1699#
#=t^3-3t-1699#
where
Cardano's method
We want to solve:
#t^3-3t-1699=0#
Let
Then:
#u^3+v^3+3(uv-1)(u+v)-1699=0#
Add the constraint
#u^3+1/u^3-1699=0#
Multiply through by
#(u^3)^2-1699(u^3)+1=0#
Use the quadratic formula to find:
#u^3=(1699+-sqrt((-1699)^2-4(1)(1)))/(2*1)#
#=(1699+-sqrt(2886601-4))/2#
#=(1699+-sqrt(2886597))/2#
#=(1699+-9sqrt(35637))/2#
Since this is Real and the derivation is symmetric in
#t_1=root(3)((1699+9sqrt(35637))/2)+root(3)((1699-9sqrt(35637))/2)#
and related Complex roots:
#t_2=omega root(3)((1699+9sqrt(35637))/2)+omega^2 root(3)((1699-9sqrt(35637))/2)#
#t_3=omega^2 root(3)((1699+9sqrt(35637))/2)+omega root(3)((1699-9sqrt(35637))/2)#
where
Now
#x_1 = 1/3(-1+root(3)((1699+9sqrt(35637))/2)+root(3)((1699-9sqrt(35637))/2))#
#x_2 = 1/3(-1+omega root(3)((1699+9sqrt(35637))/2)+omega^2 root(3)((1699-9sqrt(35637))/2))#
#x_3 = 1/3(-1+omega^2 root(3)((1699+9sqrt(35637))/2)+omega root(3)((1699-9sqrt(35637))/2))#