How do you solve #log_7 x - log_7(x-2) = log_7 11#?
1 Answer
Jan 29, 2016
# x = 11/5#
Explanation:
using the 'law of logs':
# log x - log y = log(x/y) # then
# log_7 x - log_7 (x - 2 ) = log_7(x/(x-2)) # and so
# log_7(x/(x-2)) = log_7 11 # now if
# log_b a = log_b c color(black)(" then a = c ") # hence
# x/(x-2) = 11# so 11(x-2) = x → 11x - 22 = x → 10x =22 →
# x = 11/5 #