How do you solve #log_7 x - log_7(x-2) = log_7 11#?

1 Answer
Jan 29, 2016

# x = 11/5#

Explanation:

using the 'law of logs': # log x - log y = log(x/y) #

then # log_7 x - log_7 (x - 2 ) = log_7(x/(x-2)) #

and so # log_7(x/(x-2)) = log_7 11 #

now if # log_b a = log_b c color(black)(" then a = c ") #

hence # x/(x-2) = 11#

so 11(x-2) = x → 11x - 22 = x → 10x =22 → # x = 11/5 #