How do you solve #log(x-3)+log(x+5)=log9#?
1 Answer
Jan 4, 2017
Explanation:
#log(x-3)+log(x+5)=log9#
Using
#log(x-3)(x+5)=log9#
Using
#(x-3)(x+5)=9#
# :. x^2+5x-3x-15=9#
# :. x^2+2x-24=0#
# :. (x+6)(x-4)=0#
# :. x=4,-6#
Now depending upon the context of the question we could probably eliminate