How do you solve #root3( { 3x - 13}) = root3(x-21)#?

2 Answers
May 7, 2018

#x = -4#

Explanation:

#root(3)(3x-13) = root(3)(x-21)#

First, #color(blue)("cube")# both sides:

#(root(3)(3x-13))^color(blue)(3) = (root(3)(x-21))^color(blue)(3)#

The cube root and cube cancel out, so it becomes:
#3x - 13 = x - 21#

Now subtract #color(blue)x# from both sides;
#3x - 13 quadcolor(blue)(-quadx) = x - 21 quadcolor(blue)(-quadx)#

#2x - 13 = -21#

Add #color(blue)13# to both sides:
#2x - 13 quadcolor(blue)(+quad13) = -21 quadcolor(blue)(+quad13)#

#2x = -8#

Divide both sides by #color(blue)2#:
#(2x)/color(blue)2 = -8/color(blue)2#

Therefore,
#x = -4#

Hope this helps!

May 7, 2018

#color(maroon)(x = -4#

Explanation:

#"Given : " (3x-13)^(1/3) = (x - 21)^(1/3)#

#((3x-13)^(1/3))^3 = ((x-21)^(1/3))^3#

#(3x - 13)^cancel(color(red)(((1*3)/3))) = (x - 21)^cancel(color(red)(((1*3)/3)#

#3x - 13 = x - 21#

#3x - x = 13 - 21#

#2x = -8#

#color(maroon)(x = -4#