How do you solve #sqrt(2x+3) + sqrt(4-x) = 4#?

2 Answers
Feb 9, 2017

#x=9#

Explanation:

#sqrt(2x+3) + sqrt(4-x)=4#

square both sides:

#(2x+3) + (4-x)=4^2 color(red)(larr" gone astray on this line") #

expand brackets:

#2x+3 +4 -x=16#

simplify:

#x+7=16#

subtract 7:

#x=9#

Feb 24, 2017

Taken you to a point where you could take over

Explanation:

Write as: #(sqrt(2x+3)+sqrt(4-x))=4#

Square both sides:

#(color(white)(.)sqrt(2x+3)+sqrt(4-x)color(white)(.))(color(white)(.)sqrt(2x+3)+sqrt(4-x)color(white)(.))=16#

#(sqrt(2x+2))^2 +sqrt(4-x)sqrt(2x+3)+(sqrt(4-x))^2=16#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
To check how something works by example:
Consider: # sqrt(4)xxsqrt(9) = 2xx3=6#
Can we combine these?#->sqrt(4xx9)=sqrt(36)=6# YES!
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

#(sqrt(2x+2))^2 +sqrt((4-x)(2x+3))+(sqrt(4-x))^2=16#

#2x+2+sqrt(-2x^2+5x+12) +4-x=16#

#sqrt(-2x^2+5x+12)=-x-10#

Square both sides

#-2x^2+5x+12=x^2+20x+100 #

#3x^2+15x+88=0#

I will let you tale over from this point