How do you solve #sqrt(3 - x)= 2x#?

2 Answers
Jan 31, 2016

#x=-1, 3/4#

Explanation:

#sqrt(3-x)=2x#

First square both sides.

#(sqrt(3-x))^2=(2x)^2#

#3-x=4x^2#

Move all terms to the left side.

#3-x-4x^2=0#

Rewrite the expression in standard form.

#-4x^2-x+3=0#

This is a quadratic equation in standard form , #ax+bx+c#, where #a=-4, b=-1, c=3#.

Use the a·c method to solve.

Multiply #axxc#.

#-4xx3=-12#

Find two numbers that when multiplied equal #-12#, and when added equal #-1#.

#-4 and 3# fit the pattern.

Rewrite the equation with #-4x and 3x# in place of #-x#.

#-4x^2-4x+3x+3=0#

Factor out common terms in the first pair of terms and in the second pair of terms.

#-4x(x+1)+3(x+1)=0#

Factor out #(x+1)#.

#color(red)((x+1)color(blue)((-4x+3)color(black)(=0)#

Set each term in parentheses equal to zero and solve for #x#.

#color(red)(x+1=0)#

#color(red)(x=-1)#

#color(blue)(-4x+3=0)#

#color(blue)(-4x=-3)#

Divide both sides by #color(blue)(-4)#.

#color(blue)(x=3/4)#

#x=-1, 3/4#

Explanation:

#sqrt(3-x)=2x#?

Square both sides

#(sqrt(3-x))^2=(2x)^2#

Simplify.

#3-x=4x^2#

Move all terms to the left side.

#-4x^2+3-x=0#

Rewrite in standard form.

#-4x^2-x+3=0#

This is a quadratic equation in standard form, #ax+bx+3#, where #a=-4, b=-1, c=3#

We can find the values for #x# using the quadratic formula.

Quadratic Formula

#x=(-b+-sqrt(b^2-4ac))/(2a)#

Substitute the known values into the formula.

#x=(-(-1)+-sqrt((-1)^2-(4*-4*3)))/(2*-4)#

Simplify.

#x=1+-sqrt(1-(-48))/(-8)#

Simplify.

#x=(1+-sqrt(49))/(-8)#

Simplify.

#color(purple)(x=(1+-7)/(-8))#

#color(red)(x=(1+7)/(-8))#

#color(red)(x=8/(-8)#

#color(red)(x=-1)#

#color(blue)(x=(1-7)/(-8))#

#color(blue)(x=(-6)/(-8))#

#color(blue)(x=6/8)#

Simplify.

#color(blue)(x=3/4)#