How do you solve #\sqrt { - 80+ 18r } = r#?
1 Answer
Mar 4, 2017
#r=sqrt161-9#
#r=-sqrt161-9#
Explanation:
Given
#sqrt(-80+18r)=r#
Taking square on both sides we get -
#-80+18r=r^2#
By rearranging we get -
#r^2+18r-80=0#
Use completing the square method to solve for
#r^2+18r=80#
#r^2+18r+81=80+81#
#(r+9)^2=161#
#r+9=+-sqrt(161)#
#r=sqrt161-9#
#r=-sqrt161-9#