How do you solve #\sqrt{k+7}=3\sqrt{2}#?

2 Answers
Apr 30, 2018

#k=11#

Explanation:

#sqrt(k+7) = 3sqrt2#
#(sqrt(k+7))^2 = (3sqrt2)^2#
Using exponential properties:
#((k+7)^(1/2))^2 = (3^2)(2^(1/2))^2#
#(k+7)^(1/2X 2) = 9(2^(1/2X2))#
#K+7 = 9 x 2#
#k+7 = 18#
#k=18-7#
#k=11#
Checking the answer:
#sqrt(11+7) = sqrt18#
#sqrt18= sqrt(9X2)#
#sqrt9 X sqrt2#
#3sqrt2#

Apr 30, 2018

#k=11#

Explanation:

#"note that "sqrtaxxsqrta=(sqrta)^2=a#

#color(blue)"square both sides"#

#(sqrt(k+7))^2=(3sqrt2)^2#

#rArrk+7=18larrcolor(blue)"subtract 7 from both sides"#

#rArrk=11#

#color(blue)"As a check"#

Substitute this value into the left side of the equation and if equal to the right side then it is the solution.

#sqrt(11+7)=sqrt18=sqrt(9xx2)=sqrt9xxsqrt2=3sqrt2#

#rArrk=11" is the solution"#