How do you solve the exponential equation #2^(x+2)=16^x#?

2 Answers
Feb 17, 2017

#x=2/3#

Explanation:

Note that #16=2^4#

#rArr2^(x+2)=(2^4)^x#

#rArrcolor(red)(2)^(x+2)=color(red)(2)^(4x)#

Since the bases are equal, that is #color(red)(2)# then the exponents are equal.

#"solve "4x=x+2#

#rArr3x=2#

#rArrx=2/3" is the solution"#

Feb 17, 2017

#x=2/3#

Explanation:

#2^(x+2)=16^x#

#2^(x+2)=(2*2*2*2)^x#

#2^(x+2)=(2^4)^x#

#2^(x+2)=2^(4x)#

because the base on the LHS =2 and base on RHS=2,
so the exponents are equal

#x+2=4x#

#x-4x=-2#

#-3x=-2#

multiply both sides by #-1#

#3x=2#

#x=2/3#

substitute# x=2/3#

#2^((2/3)+2)=16^(2/3)#

#2^(8/3)=(2*2*2*2)^(2/3)#

#2^(8/3)=(2^4)^(2/3)#

#2^(8/3)=2^(8/3)#