How do you solve the following limit #(sqrt(x+3)-sqrt(x))/(sqrt(x+2)-sqrt(x+1))# as x approaches infinity?

1 Answer
Jun 20, 2018

#3#

Explanation:

In the first step we multiply numerator and denominator bys

#sqrt(x+3)+sqrt(x)#
and then by
#sqrt(x+2)+sqrt(x+1)#
and we get

#3(sqrt(x+2)+sqrt(x+1))/(sqrt(x+3)+sqrt(x))#
and then leave aside #sqrt(x)# in the numerator and denominator

#(3sqrt(x)(sqrt(1+2/x)+sqrt(1+1/x)))/(sqrt(x)(sqrt(1+3/x)+1))#
cancelling the square root term we get

#6/2=3# as the searcherd Limit if #x#tends to infinity.