How do you solve the following linear system: #3x + y = -6 , -x + 2y = 8 #?

1 Answer
Feb 12, 2017

See the entire solution process below:

Explanation:

Step 1) Solve the first equation for #y#:

#3x + y = -6#

#-color(red)(3x) + 3x + y = -color(red)(3x) - 6#

#0 + y = -3x - 6#

#y = -3x - 6#

Step 2) Substitute #-3x - 6# for #y# in the second equation and solve for #x#:

#-x + 2y = 8# becomes:

#-x + 2(-3x - 6) = 8#

#-x - 6x - 12 = 8#

#-7x - 12 = 8#

#-7x - 12 + color(red)(12) = 8 + color(red)(12)#

#-7x - 0 = 20#

#-7x = 20#

#(-7x)/color(red)(-7) = 20/color(red)(-7)#

#(color(red)(cancel(color(black)(-7)))x)/cancel(color(red)(-7)) = -20/7#

#x = -20/7#

Step 3) Substitute #-20/7# for #x# in the solution to the first equation at the end of Step 1 and calculate #y#:

#y = -3x - 6# becomes:

#y = (-3 xx -20/7) - 6#

#y = 60/7 - (6 xx 7/7)#

#y = 60/7 - 42/7#

#y = 18/7#

The solution is: #x = -20/7# and #y = 18/7# or #(-20/7, 18/7)#