How do you solve the following linear system: # 4y=-7x+9 , x+4y=1 #?

1 Answer
Sep 3, 2017

See a solution process below:

Explanation:

Step 1) Solve the second equation for #x#:

#x + 4y = 1#

#x + 4y - color(red)(4y) = 1 - color(red)(4y)#

#x + 0 = 1 - 4y#

#x = 1 - 4y#

Step 2) Substitute #(1 - 4y)# for #x# in the first equation and solve for #y#:

#4y = -7x + 9# becomes:

#4y = -7(1 - 4y) + 9#

#4y = (-7 xx 1) + (-7 xx -4y) + 9#

#4y = -7 + 28y + 9#

#4y = -7 + 9 + 28y#

#4y = 2 + 28y#

#4y - color(red)(28y) = 2 + 28y - color(red)(28y)#

#(4 - color(red)(28))y = 2 + 0#

#-24y = 2#

#(-24y)/color(red)(-24) = 2/color(red)(-24)#

#(color(red)(cancel(color(black)(-24)))y)/cancel(color(red)(-24)) = -1/12#

#y = -1/12#

Step 3) Substitute #-1/12# for #y# in the solution to the second equation at the end of Step 1 and calculate #x#:

#x = 1 - 4y# becomes:

#x = 1 - (4 xx -1/12)#

#x = 1 - (-4/12)#

#x = 1 - (-1/3)#

#x = 1 + 1/3#

#x = 3/3 + 1/3#

#x = 4/3#

The Solution Is: #x = 4/3# and #y = -1/12# or #(4/3, -1/12)#