How do you solve the following linear system: # -x+2y=-6 , 4x+3y=0 #?

1 Answer
Nov 17, 2015

#x=18/11#
Solution method to find x is shown in detail. I will let you solve for y by substituting for #x# in Eqn #(1_a) " or "(2_a)#
The methods I used to find #x# help with all sorts of Algebra.

Explanation:

Given:
#-x+2y=-6 ..................................(1)#
#4x+3y=0........................................(2)#

rearrange the equations to give:

#y=1/2x-3...................................(1_a)#
#y=-4/3x.....................................(2_a)#

Equating equation #color(brown)((1_a))# to equation #color(brown)((2_a))# through #color(blue)(y)#

#color(brown)(1/2x-3 =) color(blue)(y) color(brown)(= -4/3x )#

#1/2x-3=-4/3x#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add #color(blue)(4/3x)# to both sides:

#color(brown)((1/2x-3)) color(blue)(+4/3x) = color(brown)((-4/3x)) color(blue)(+4/3x)#

#1/2x+4/3x -3 =0#

#(3+8)/6x -3=0#

#11/6 x -3 =0#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Add #color(blue)(3)# to both sides

#color(brown)((11/6x-3)) color(blue)(+3) =color(brown)((0))color(blue)(+3)#

#11/6x +0 = 3#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Multiply both sides by #color(blue)(6/11)#

#color(brown)((11/6x) )color(blue)(times 6/11)=color(brown)((3))color(blue)(times 6/11)#

#color(green)(x=18/11)#